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1 Abstract

Deep learning models, while highly accurate, are often computationally expensive and
resource-intensive, making their deployment on hardware accelerators both challenging
and essential. In this work, we explore the design, optimization, and hardware realization
of convolutional neural network (CNN) architectures targeted for efficient implementa-
tion. Our approach has two main directions: (1) model-level exploration with quantiza-
tion, and (2) hardware-level implementation using Verilog and systolic array accelerators.

At the model level, we extensively explored various training techniques, CNN archi-
tectures, architectural styles, and quantization strategies to identify an optimal balance
between accuracy and hardware cost. Our most minimal variant achieves 83% test accu-
racy with only 52k parameters, using 8-bit post-training quantization (Q1.7 fixed-point).
This quantized model was implemented and deployed on a Verilog-based hardware pro-
totype, providing an end-to-end evaluation of model-hardware interaction and inference
behavior. On the hardware side, we compared multiple adder and multiplier architectures
within a systolic array–based MAC framework, analyzing trade-offs in latency, through-
put, area, and frequency. Through this exploration, we derived several empirical insights
on efficient CNN–accelerator co-design that, to our knowledge, have not been systemati-
cally reported before.

At the hardware realization level, all implementations were carried out entirely using
open-source EDA tools and other freeware tools, ensuring full reproducibility and trans-
parency of the workflow. Despite the constraints of an open-source toolchain, we achieved
a fully functional and synthesizable design flow. The second-generation Verilog imple-
mentation employs a two-cycle handshake protocol, auto-generated ROM blocks mapped
to LUT structures, and a hierarchical modular architecture for layer-level flexibility. This
was later consolidated into a synchronous top-level design integrating convolution, pool-
ing, and fully connected blocks, validated through simulation and synthesis. The entire
system can be reproduced or extended from scratch using only open-source frameworks,
serving as a baseline for future CNN accelerator research and educational hardware pro-
totyping.

Our results show that careful co-design of CNN architectures and hardware accel-
erators enables efficient fixed-point implementations with minimal accuracy loss. The
experiments highlight the tradeoffs between accuracy, parameter size, and hardware com-
plexity, while also establishing a foundation for scalable systolic-array-based deep learning
accelerators
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2 Introduction

The rapid evolution of deep learning has transformed fields such as computer vision,
speech processing, and natural language understanding. The impressive accuracy of mod-
ern neural networks, however, comes at the expense of high computational and memory
demands. As model sizes and data volumes grow, conventional processors struggle to
sustain the required throughput within realistic power and area limits. This has made
hardware acceleration essential for efficient, scalable deep learning deployment across
cloud, edge, and embedded systems.

Hardware accelerators achieve performance efficiency through parallelism, pipelining,
and locality of reference while tailoring compute and memory subsystems to specific
workloads. Their design centers on efficient realization of multiply–accumulate (MAC)
operations, which dominate both computation and power consumption. Optimizing MAC
flow—via datapath refinement, resource sharing, and latency hiding—is key to sustaining
high utilization. Deep pipelines raise throughput and clock frequency but require careful
handling of hazards and synchronization to prevent stalls.

At the architectural level, efficiency depends on balancing computation and data
movement. Memory accesses often consume more energy than arithmetic, making dataflow
and memory hierarchy design critical. Techniques like tiling, buffering, and double-
buffered scheduling maintain data availability, while bandwidth-aware partitioning limits
off-chip traffic. The chosen dataflow—input-, output-, or weight-stationary—directly
shapes reuse patterns and energy efficiency.

Microarchitectural design must optimize for area, latency, and power under strict
timing constraints. Pipeline depth, logic fanout, interconnect topology, and clock gating
all affect frequency and power. Likewise, arithmetic precision and quantization influence
accuracy and complexity, creating trade-offs between numerical fidelity and resource use.
Fixed-point and low-bit representations thus remain popular for inference accelerators.

Beyond datapath and memory tuning, hardware–software co-design emphasizes joint
optimization of model and hardware configurations to maximize energy efficiency while
preserving accuracy. This includes restructuring algorithms for locality, exploiting spar-
sity, and mapping computation effectively to hardware fabrics.

Despite steady progress, accelerator design faces ongoing challenges: balancing perfor-
mance, area, and energy efficiency; ensuring scalability as models evolve; and maintain-
ing reproducibility across toolchains. Addressing these demands a holistic view spanning
arithmetic unit design, pipeline scheduling, memory organization, and system integration.
As deep learning proliferates from data centers to edge devices, custom, power-aware, and
reconfigurable hardware will remain vital to sustaining its growth and practical adoption.
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3 CNN Model Design and Training

3.1 CIFAR10 Dataset

The CIFAR-10 dataset is a widely used benchmark in the field of computer vision and
deep learning. It consists of 60,000 color images divided into 10 distinct classes, with
6,000 images per class. Among these, 50,000 images are used for training and 10,000
images for testing. Each image has a fixed resolution of 32× 32 pixels and contains three
color channels (Red, Green, and Blue), making the dataset suitable for RGB-based image
processing tasks.

The ten classes in the CIFAR-10 dataset are:

Sample images from the CIFAR-10 dataset representing all 10 classes.

• Airplane: Images of airplanes in various orientations and backgrounds, typically
capturing the full aircraft.

• Automobile: Images of cars, trucks, and other vehicles, usually seen from the side
or front view.

• Bird: Various species of birds captured in different poses, often perched or in flight.

• Cat: Images of domestic cats in diverse postures and backgrounds.

• Deer: Deer in natural settings, often standing or grazing.

• Dog: Domestic dogs of various breeds and poses.

• Frog: Frogs captured in natural environments, frequently shown on plants or water
surfaces.

• Horse: Horses in different stances, sometimes in fields or riding contexts.

• Ship: Images of ships, boats, and other watercraft, generally on water bodies.

• Truck: Trucks and lorries, often seen on roads or in industrial settings.
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Each image is small, low-resolution, and contains varied backgrounds, which makes
the dataset challenging for classification tasks. Despite its simplicity, CIFAR-10 is an
effective benchmark for testing image recognition models and evaluating their ability to
learn features from RGB images with limited resolution.

3.2 Training Setup and Data Augmentation

All models in this study are pure convolutional neural networks trained end-to-end onCo-
lab using GPU acceleration. To improve generalization and reduce overfitting, extensive
data augmentation was applied to the CIFAR-10 dataset. Augmentation techniques
included random rotations, horizontal flips, and small translations in both width and
height directions. This allows the model to see varied versions of the same image and
encourages robustness to small perturbations in the input.

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Data augmentation

datagen = ImageDataGenerator(

rotation_range=15,

horizontal_flip=True,

width_shift_range=0.1,

height_shift_range=0.1,

)

datagen.fit(x_train)

The training pipeline was designed to be robust and adaptive, ensuring stable conver-
gence across different neural network architectures. Specifically, all models were compiled
using the Adam optimizer , which combines the benefits of adaptive learning rates and
momentum-based updates. Given a set of parameters θ at training step t, the Adam
optimizer updates the parameters according to:

mt = β1mt−1 + (1− β1)∇θL(θt−1) (1)

vt = β2vt−1 + (1− β2)(∇θL(θt−1))
2 (2)

m̂t =
mt

1− βt
1

(3)

v̂t =
vt

1− βt
2

(4)

θt = θt−1 − α
m̂t√
v̂t + ϵ

(5)

where mt and vt are the first and second moment estimates, β1 and β2 are decay rates,
α is the learning rate, and ϵ is a small constant to prevent division by zero.
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For the loss function, we employed categorical cross-entropy to reflect the multi-
class classification nature of CIFAR-10. Given a true label vector y = [y1, . . . , yC ] and
predicted probabilities ŷ = [ŷ1, . . . , ŷC ] for C classes, the loss is computed as:

Lcross-entropy(y, ŷ) = −
C∑
i=1

yi log(ŷi) (6)

Finally, accuracy was monitored as the primary performance metric:

Accuracy =
Number of correct predictions

Total number of predictions
(7)

In code, the model compilation step can be expressed as:

model = build_model()

model.compile(

optimizer=’adam’,

loss=’categorical_crossentropy’,

metrics=[’accuracy’]

)
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3.3 Learning Rate and Early Stopping

Training employed two complementary mechanisms to improve convergence and prevent
overfitting:

1. Learning Rate Reduction on Plateau: This callback monitors validation accu-
racy and reduces the learning rate by a factor of 0.5 if the metric does not improve
for 5 consecutive epochs. This allows the model to make finer adjustments once it
approaches a local minimum.

2. Early Stopping: Training halts if validation accuracy does not improve for 15
epochs, restoring the best model weights. This prevents unnecessary overfitting
and reduces training time.

from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping

# Callbacks

lr_reduction = ReduceLROnPlateau(monitor=’val_accuracy’, patience=5, factor=0.5, verbose=1)

early_stop = EarlyStopping(monitor=’val_accuracy’, patience=15, restore_best_weights=True)

3.4 Model Training

Training was performed using a batch size of 64 over a maximum of 100 epochs,
leveraging the data generator to feed augmented batches. The use of online augmenta-
tion ensures continuous exposure to varied inputs during training, reducing the model’s
reliance on memorizing the dataset.

history = model.fit(

datagen.flow(x_train, y_train, batch_size=64),

validation_data=(x_test, y_test),

epochs=100,

callbacks=[lr_reduction, early_stop],

verbose=1

)

This setup provides a balance between convergence speed, model stability, and gener-
alization, making it suitable for experiments with multiple architectures. Adam’s adap-
tive updates accelerate convergence for deeper networks, while learning rate scheduling
refines weight updates in later stages. Early stopping minimizes wasted computation and
mitigates overfitting risks.
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3.5 Exploring Multiple Architectures

The architectural exploration began withMODEL ARCH 1, a deep convolutional neu-
ral network (CNN) consisting of three convolutional blocks with 64→128→256 filters.
Each block was followed by Batch Normalization (BN) and ReLU activations. A fully
connected (Dense) layer with 512 units preceded the final softmax classifier. The inclu-
sion of BN stabilized training by normalizing intermediate activations, reducing internal
covariate shift, and enabling higher learning rates. Although this model achieved the
highest test accuracy of 90.91%, its parameter count (∼3.25M) made it less suitable for
hardware-constrained environments.

To reduce computational complexity and improve deployment efficiency,MODEL ARCH 2
reduced the convolutional filter sizes to 32→64→128 and replaced the Dense512 layer with
a smaller Dense256 layer, while retaining BN. This design achieved a modest accuracy
drop (88.84%) but substantially lowered the parameter count to approximately 0.82M.

Further optimization led to MODEL ARCH 3, where Batch Normalization was
removed entirely to minimize floating-point operations and simplify inference hardware.
This modification resulted in an accuracy of 85.53% with around 0.52M parameters,
offering a balance between efficiency and performance.

In MODEL ARCH 4, the fully connected layers were replaced by a Global Average
Pooling (GAP) layer, which aggregates spatial features by averaging across each fea-
ture map prior to classification. This change drastically reduced the parameter count to
approximately 72.7k while maintaining competitive accuracy (83.05%), mitigating over-
fitting, and preserving essential feature representations.

Subsequent simplifications were explored throughMODEL ARCH 5 andMODEL ARCH 6.
MODEL ARCH 5 employed only two convolutional blocks (16→32 filters) with GAP and
a Dense10 output, achieving 67.94% accuracy with a minimal parameter count of about
17k. To regain lost representational capacity, MODEL ARCH 6 increased the filter count
to 32→64, improving accuracy to 78.92% while keeping the parameters low (∼66k).

To enhance feature propagation without increasing depth, MODEL ARCH 7 intro-
duced residual connections. Each convolutional block incorporated a 1×1 convolutional
shortcut, enabling direct gradient flow and mitigating vanishing gradient issues. Com-
bined with GAP and Dense10 output, this architecture achieved 81.08% accuracy with
approximately 68k parameters.

Finally, MODEL ARCH 8 refined the residual structure by reducing the number of
filters to 28→56, thereby lowering the parameter count to roughly 52.6k while maintaining
a comparable accuracy of 80.45%. This model represented a well-balanced trade-off
between compactness and representational strength.
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3.5.1 Summary of Architectures

Model Short Name /
Key Layers

Test Accuracy (%) Total Parameters

MODEL ARCH 1 64→128→256
convs, BN,
Dense512 (first
long model)

90.91 3,253,834

MODEL ARCH 2 32→64→128
convs, BN,
Dense256

88.84 816,938

MODEL ARCH 3 32→64→96 convs,
no BN, Dense256

85.53 517,002

MODEL ARCH 4 16→32→64 convs,
GlobalAvgPool,
Dense10

83.05 72,730

MODEL ARCH 5 16→32 convs,
GlobalAvgPool,
Dense10 (smaller)

67.94 16,986

MODEL ARCH 6 32→64 convs,
GlobalAvgPool,
Dense10

78.92 66,218

MODEL ARCH 7 Residual: [32→32
+ 1×1 shortcut],
[32→64 + 1×1
shortcut], GAP,
Dense10

81.08 68,458

MODEL ARCH 8 Residual (28→56
filters): same
structure as #7

80.45 52,622

Comparison of different model architectures

Model FLOPs (×106)
MODEL ARCH 1 276.5
MODEL ARCH 2 99.7
MODEL ARCH 3 68.2
MODEL ARCH 4 20.4
MODEL ARCH 5 7.2
MODEL ARCH 6 13.8
MODEL ARCH 7 15.2
MODEL ARCH 8 12.6

FLOPs of each model architecture in millions.
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3.5.2 Training and Loss Curves

MODEL ARCH 1, Acc: 90.91% MODEL ARCH 5, Acc: 67.94%

MODEL ARCH 2, Acc: 88.84% MODEL ARCH 6, Acc: 78.92%

MODEL ARCH 3, Acc: 85.53% MODEL ARCH 7, Acc: 81.08%

MODEL ARCH 4, Acc: 83.05% MODEL ARCH 8, Acc: 80.45%

Training and loss curves for each architecture
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4 Model Quantisation

Quantization is a fundamental technique in modern deep learning, especially when de-
ploying models on resource-constrained hardware like FPGAs, microcontrollers, or edge
devices. At its core, quantization involves approximating high-precision floating-point
values, which are typically stored using 32-bit or 16-bit floating-point representations,
with lower-precision fixed-point or integer representations. This reduces the memory
footprint, decreases memory bandwidth requirements, lowers power consumption, and
accelerates inference. While this approximation can introduce small errors, careful ap-
plication of quantization allows models to retain nearly the same predictive performance
while enabling efficient hardware implementation.

The motivation for quantization is primarily practical. Floating-point arithmetic,
especially in deep neural networks with millions of parameters, is expensive in terms
of both computation and memory. On FPGAs or ASICs, high-precision floating-point
units occupy significant silicon area and consume considerable power. By reducing the
bit-width of weights and activations, we can implement simpler arithmetic units, reduce
memory usage, and increase parallelism, which results in faster and more energy-efficient
execution.

4.1 Types of Quantization

Quantization methods in deep learning generally fall into two categories: Post-Training
Quantization (PTQ) and Quantization-Aware Training (QAT). Each has distinct mech-
anisms, advantages, and trade-offs.
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4.1.1 Post-Training Quantization (PTQ)

Post-Training Quantization converts a pre-trained floating-point model into a lower-
precision representation after training, without modifying the training process. This
makes PTQ simple and fast, but it may introduce small accuracy loss due to quantiza-
tion errors.

# Example: PTQ in PyTorch

import torch

from torch.quantization import quantize_dynamic

# Pre-trained floating-point model

model_fp = MyModel()

# Convert model weights to 8-bit integers dynamically

model_int8 = quantize_dynamic(model_fp, {torch.nn.Linear}, dtype=torch.qint8)

In PTQ, weights and activations are scaled and rounded to integer or fixed-point
values. For example, a weight wfp in the range [-1,1) is converted to fixed-point wq as:

wq = round(wfp · (2n − 1))

This allows the model to run efficiently on hardware without retraining.
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4.1.2 Quantization-Aware Training (QAT)

Quantization-Aware Training simulates the effects of quantization during training. Fake
quantization nodes are inserted in the forward pass to emulate rounding and trunca-
tion, while gradients are computed using the Straight-Through Estimator (STE) to allow
learning of quantization-resilient weights.

# Example: QAT in PyTorch

import torch

from torch.quantization import prepare_qat, convert

model_fp = MyModel()

model_fp.train()

# Prepare the model for QAT

model_qat = prepare_qat(model_fp)

# Train the model with simulated quantization

train(model_qat, train_loader, epochs=5)

# Convert to actual quantized model after training

model_int8 = convert(model_qat)

QAT typically results in higher post-quantization accuracy than PTQ, particularly for
very low bit-widths, but requires retraining and additional computation during training.

4.1.3 Comparison Summary

• PTQ: Fast, simple, no retraining, small accuracy loss.

• QAT: Higher accuracy, adapts to quantization noise, requires retraining.

14



4.2 Floating-Point vs Fixed-Point Representation

In deep learning, numerical values such as model weights, activations, and biases can be
stored using either floating-point or fixed-point representations. Floating-point formats,
such as FP32 (32-bit float) or FP16 (16-bit float), provide a wide dynamic range and high
precision, thanks to their structure: a sign bit, exponent bits, and mantissa bits. The
exponent allows the number to scale up or down over a large range, which is particularly
useful for training deep networks where values can vary dramatically. For instance, FP32
has 1 sign bit, 8 exponent bits, and 23 mantissa bits, supporting extremely small or large
numbers.

While floating-point provides flexibility and precision, it comes with significant draw-
backs in hardware implementations. Floating-point arithmetic units are resource-intensive,
consume more power, and have higher latency. On FPGAs and ASICs, implementing
FP32 multipliers and adders can occupy a large portion of logic resources or DSP blocks,
limiting the number of parallel computations.

Fixed-point representation, in contrast, divides a number into a fixed number of bits
for the integer and fractional parts. There is no exponent; the scaling is implicit. This
approach reduces hardware complexity because arithmetic operations can be performed
using simple integer addition and multiplication, which are much more hardware-efficient.
For example, a Q1.7 fixed-point number uses 1 bit for the sign, 0 bits for additional
integer magnitude (range [-1, 0.992]), and 7 bits for the fractional part (precision approx
0.0078). Fixed-point representation is therefore widely used in inference on embedded
devices, where memory and power are limited.

To illustrate the difference:

# Representing 0.625

# FP8 (floating point, simplified 8-bit)

0.625 -> sign:0, exponent:011, mantissa:1010000

# Q1.7 fixed-point

0.625 * 2^7 = 80 -> binary: 01010000

From this example, it is clear that fixed-point can represent values with sufficient
precision for many inference tasks while using simpler and smaller hardware units, at the
cost of dynamic range.
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4.3 Fixed-Point Representation: Qm.n Format and Bit Struc-
ture

Fixed-point numbers are commonly represented using the Qm.n notation, where m
denotes the number of integer bits (including the sign bit) and n denotes the number of
fractional bits. The total bit-width ism+n, with each bit serving a specific purpose. Note
that some resources may describe the format differently or use alternative bit structures;
in this work, we follow the convention based on the resources listed at the end.

• The most significant bit (MSB) represents the sign (0 for positive, 1 for nega-
tive).

• The next m− 1 bits represent the integer part.

• The remaining n least significant bits (LSBs) represent the fractional part.

A Qm.n number represents values in the range:

x ∈ [−2m−1, 2m−1 − 2−n]

The fractional bits determine the smallest step (resolution) between two representable
numbers:

Step size = 2−n

For example, Q1.7 numbers can represent values from -1 to 0.992 in increments of
0.0078. Increasing n increases precision but requires larger multipliers for arithmetic
operations. Increasing m expands the representable range but also increases the bit-
width, consuming more memory and hardware resources.

Total bits Integer bits (m) Fractional bits (n) Range / Step size
8 1 7 [-1, 0.992] / 0.0078
8 2 6 [-2, 1.984] / 0.0156
16 1 15 [-1, 0.99997] / 0.00003
16 4 12 [-8, 7.9998] / 0.000244

This notation also directly informs hardware implementation: multipliers and adders
can be sized according to the total bit-width, and overflow/underflow handling can be
incorporated depending on the number of integer bits.
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4.4 Hardware Considerations for Qm.n Quantization

Implementing Qm.n quantization on hardware requires careful consideration of the trade-
offs between accuracy, resource usage, and performance:

Integer Bits (m): The integer bits define the range of representable numbers. Choos-
ing too few integer bits can result in overflow during computation, especially in deeper
layers where activation values may accumulate. Choosing too many bits increases the
bit-width of multipliers and adders, consuming more LUTs and DSP blocks in FPGAs
or more area in ASICs.

Fractional Bits (n): Fractional bits determine precision. More fractional bits reduce
quantization error, improving model accuracy, but require larger multipliers and increase
power consumption. Fewer fractional bits reduce resource usage and latency but can
cause a noticeable drop in inference quality.

Memory Footprint: The total bit-width m + n directly affects memory usage for
storing weights, biases, and activations. For large models, reducing bit-width from 32
bits (FP32) to 8 bits (Q1.7 or Q2.6) can reduce memory usage by 4x, enabling deployment
on devices with limited RAM or cache.

Arithmetic Unit Design: Multiplication and addition are implemented using integer
arithmetic. For example, an 8-bit Q1.7 multiplier can be realized with a single DSP slice in
an FPGA. Doubling the fractional bits requires doubling the size of the multiplier, which
increases latency and resource usage. Accumulation must also be carefully managed:
when summing many fixed-point numbers, intermediate results may require additional
integer bits to avoid overflow.

Latency and Power: Reducing bit-width reduces switching activity and the number
of gates required, which decreases both latency and dynamic power consumption. For
real-time or battery-powered systems, this is critical. Choosing the right Qm.n format is
therefore a balance between acceptable accuracy and minimal hardware cost.

Practical Example: For a normalized neural network with weights in [-1, 1), m = 1 is
usually sufficient. Choosing n = 7 allows reasonable precision for inference with minimal
hardware usage. Increasing n to 15 improves accuracy but doubles the size of multipliers
and increases memory footprint, often unnecessarily for edge applications.
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4.5 Quantization Evaluation on CIFAR-10

We evaluated two different model architectures,MODEL ARCH 4 andMODEL ARCH 8,
using a small subset of the CIFAR-10 dataset (100 images, 10 images per class). Both
Python simulations and Verilog hardware implementations were compared across multi-
ple fixed-point formats (Qm.n) as well as floating-point formats. We also calculated the
corresponding model sizes for each representation.

Model Size Calculation: The size of a model in bytes can be estimated as:

Model Size (bytes) = Number of Parameters× Bit-width

8

where the bit-width corresponds to the total bits of the numeric format (e.g., Float32
= 32 bits, Q1.7 = 8 bits).

4.5.1 MODEL ARCH 4 (72,730 Parameters)

Format Accuracy (%) Model Size (KB)
Float32 85 291.0
Q1.31 84 291.0
Q1.15 84 145.0
Q1.7 83 72.7
Q1.3 65 36.4

Observations: As expected, reducing the fractional bit-width n in Qm.n leads to
smaller model sizes. Accuracy remains high for Q1.31 and Q1.15 formats, while Q1.3
shows a significant drop. The Verilog implementation closely matches Python results,
confirming that fixed-point arithmetic can be accurately realized in hardware.

4.5.2 MODEL ARCH 8 (52,622 Parameters)

Format Accuracy (%) Model Size (KB)
Float32 80 210.49
Q1.31 84 210.49
Q1.15 84 105.24
Q1.7 83 52.62
Q1.3 78 26.31

Observations: Similar trends are observed for MODEL ARCH 8. High-precision fixed-
point formats (Q1.31 and Q1.15) maintain accuracy comparable to floating-point, while
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lower bit-widths reduce model size at the cost of accuracy. Even with Q1.7, the model
retains reasonable performance, making it suitable for embedded hardware deployment.

Summary: These evaluations demonstrate a clear trade-off between model size and
accuracy. High-bit fixed-point formats allow near-floating-point accuracy with moder-
ate memory reduction. Lower-bit formats dramatically reduce model size but incur an
accuracy penalty. This provides guidance for selecting Qm.n formats in hardware imple-
mentations, balancing resource usage and performance.
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5 Hardware Implementation in Verilog

5.1 Verilog HDL and Its Limitations

A CNN implemented in hardware is fundamentally different from its software counterpart.
In software, an image is typically loaded into memory and processed in batch. On an
FPGA, however, images are captured directly from a camera as a continuous stream of
pixel data. The camera outputs pixels sequentially, often in RGB format, along with
synchronization signals such as VSYNC (Vertical SYNC) and HSYNC (Horizontal SYNC).

Camera Interface on FPGA

• VSYNC: Indicates the start of a new frame. When this signal is asserted, the
FPGA knows that the first row of the image is being transmitted.

• HSYNC: Indicates the start of a new line. For every assertion, the FPGA knows
that the next row of pixels is incoming.

• Pixel Clock (PCLK): Driven by the camera, this clock signals when a new pixel
is valid on the data bus.

The FPGA uses these signals to latch pixel values in real time. Typically, a FIFO or
line buffer is implemented to temporarily store pixels before feeding them to the CNN
hardware. For simulation purposes, instead of a live camera feed, images are preloaded
as text files, .mem files, or auto-generated ROM modules. Pretrained CNN kernels and
biases are similarly stored in memory for easy access.

Example: Pixel Capture Logic (Simplified)

always @(posedge pclk) begin

if (vsync) begin

row <= 0; col <= 0;

end else if (hsync) begin

col <= 0; row <= row + 1;

end else begin

pixel_buffer[row][col] <= pixel_data;

col <= col + 1;

end

end
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Limitations in Verilog HDL While Verilog is powerful for RTL design, it has limi-
tations:

• Not all constructs are synthesizable. For instance, $readmemh works in simulation
but may not be supported in synthesis for some FPGA flows.

• Real-time camera interfacing requires precise timing management, which cannot
always be verified in simulation without proper testbenches or stimulus generators.

• Complex data structures (like multi-dimensional arrays) must often be flattened to
1D for hardware storage, requiring careful index calculations.

Example: Simple ROM Initialization Using $readmemh

reg [7:0] rom [0:1023];

initial begin

$readmemh("weights_layer1.mem", rom);

end

Tools Used

• Iverilog: Simulation of Verilog modules.

• Python: Automation of ROM generation and fixed-point conversion.

• TCL/Python: Scripted inference automation for testing.

• EDA tools: Yosys, OpenLane, OpenROAD, KLayout for synthesis, layout, and
routing.
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5.2 On-Chip vs. Off-Chip Memory

Memory in FPGA-based CNNs can reside on-chip (BRAM, LUTRAM) or off-chip (ex-
ternal DDR, SRAM). The choice affects latency, throughput, and resource usage.

• On-Chip Memory: Low latency and high bandwidth make on-chip memory ideal
for small, frequently-accessed data like feature maps or partial kernels. BRAMs or
LUTRAMs store these values.

• Off-Chip Memory: Large datasets, full CNN weights, or images are stored off-
chip. Access is slower and requires careful timing, but allows handling of large
models.

• Hybrid Approach: In this project, small weight matrices and feature maps are
stored on-chip, while full layer weights and images are placed in ROMs or off-chip
memory.

Example: BRAM Instantiation

(* ram_style = "block" *) reg [7:0] bram[0:1023];

always @(posedge clk) begin

if (we) bram[addr] <= data_in;

data_out <= bram[addr];

end

5.3 Types of LUTs

Look-Up Tables (LUTs) are the smallest logic units in FPGAs and can be used to im-
plement combinational logic or small memory blocks.

• 1- to 2-input LUTs: Implement simple combinational logic functions.

• 4- to 6-input LUTs: Used for small multipliers, adders, or logic in CNN modules.

• Distributed RAM LUTs: LUTs configured as small RAM blocks to store CNN
weights or activations.

Example: LUT as RAM

reg [7:0] lut_ram[0:15]; // 16 elements

always @(posedge clk) begin

lut_ram[addr] <= data_in;

data_out <= lut_ram[addr];

end
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5.4 Fixed-Point Quantization and ROM Generation

Floating-point CNN weights are converted to fixed-point (e.g., Q1.7) to reduce memory
usage and increase hardware efficiency. Overflow handling is crucial during conversion:

SCALE = 1 << 7

MAX_VAL = 127

MIN_VAL = -128

def float_to_fixed(f):

val = int(round(f*SCALE))

val = min(max(val, MIN_VAL), MAX_VAL)

return val

Weights are flattened into layer-wise ROM files in hexadecimal format:

for val in fixed_values:

hexval = format((val + 256) % 256, "02X")

f.write(hexval + "\n")

Parameterized ROM Module

module rom_layer #(parameter DEPTH=1024, WIDTH=8)(

input wire clk, rst,

input wire addr_valid,

output reg addr_ready,

input wire [$clog2(DEPTH)-1:0] addr,

output reg data_valid,

input wire data_ready,

output reg [WIDTH-1:0] data

);

reg [WIDTH-1:0] rom [0:DEPTH-1];

initial $readmemh("weights_layer.mem", rom);

endmodule
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5.5 Two-Cycle Handshake Protocol

The handshake protocol ensures data integrity and proper timing between the ROM and
the consumer module (CNN).

• Cycle 1 (Address Phase): The consumer asserts addr valid and provides an
address. If the ROM is ready (addr ready=1), the ROM latches the address and
prepares the data. The ROM then de-asserts addr ready to prevent new addresses
until data is read.

• Cycle 2 (Data Phase): The ROM asserts data valid to indicate that valid data
is available. The consumer reads the data and asserts data ready. Once the data is
consumed, the ROM de-asserts data valid and reasserts addr ready for the next
request.

• Importance: This protocol prevents race conditions, ensures synchronization across
clock domains if needed, and allows the consumer to read data at its own pace with-
out losing or overwriting data.

Verilog Implementation of Two-Cycle Handshake

// Address phase

if (addr_valid && addr_ready) begin

addr_reg <= addr;

data <= rom[addr];

data_valid <= 1’b1;

addr_ready <= 1’b0;

end

// Data phase

if (data_valid && data_ready) begin

data_valid <= 1’b0;

addr_ready <= 1’b1;

end
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5.6 Image ROM Generation and CNN Input Handling

Images are split into RGB channels, converted to 8-bit integers, and stored in .mem files.
Each channel gets a dedicated ROM module:

for i in range(32):

for j in range(32):

f.write(f"{array[i,j]:02X}\n")

Verilog ROM:

module image_r_rom(

input wire clk,

input wire [9:0] addr,

output reg [7:0] data

);

reg [7:0] rom[0:1023];

initial $readmemh("image_r.mem", rom);

always @(posedge clk) data <= rom[addr];

endmodule

The CNN module reads from these ROMs using the two-cycle handshake protocol
described earlier, ensuring proper synchronization between image inputs and convolution
layers.
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5.7 Convolution Core Implementation (‘conv2d‘)

The ‘conv2d‘ module implements a 2D convolution layer in hardware. The module is
designed to be highly parametrizable, supporting arbitrary input dimensions, channels,
number of filters, and kernel size. It also interfaces directly with ROM modules for
images, kernels, and biases.

Parametrization

• WIDTH, HEIGHT: Dimensions of the input feature map.

• CHANNELS: Number of input channels (e.g., RGB = 3).

• FILTERS: Number of convolutional filters.

• K: Kernel size (assumed square).

• PAD: Padding applied to input edges.

• BIAS MODE POST ADD: Determines if bias is added post MAC normaliza-
tion or pre.

This parametrization allows a single hardware module to be reused for different layers
without rewriting RTL.

FSM-Based Control The convolution is implemented using a finite state machine
(FSM) that coordinates:

• Requests for image, kernel, and bias data via ROM handshakes.

• Accumulation of multiply-accumulate (MAC) results across kernel dimensions and
channels.
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• Moving across pixels and filters.

• Output generation and validation signaling.

FSM Example: Pixel Processing Loop

// Determine if kernel element is valid

in_y = i + m - PAD;

in_x = j + n - PAD;

if ((in_y >= 0) && (in_y < HEIGHT) && (in_x >= 0) && (in_x < WIDTH)) begin

image_addr <= in_y * WIDTH + in_x;

image_addr_valid <= 1’b1;

end

The FSM ensures all channels and kernel elements are processed systematically, pre-
venting race conditions and handling padding gracefully.

Handshake Protocol All ROM accesses (image, kernel, bias) use a two-cycle hand-
shake to synchronize between producer (ROM) and consumer (‘conv2d‘ core):

• Address Phase: The FSM asserts {image/kernel/bias addr valid} and pro-
vides an address. The ROM asserts addr ready when it can accept the address.

• Data Phase: Once data is available, the ROM asserts data valid. The FSM then
asserts data ready to latch the value and proceed to the next element.

This handshake allows the convolution core to wait for memory without stalling the
entire pipeline and is essential for synchronizing multiple ROM modules.

Accumulation and Bias Application The convolution core uses a signed accumu-
lator (‘accum‘) to store intermediate MAC results. After completing the MAC over all
channels and kernel elements:

• The accumulator is normalized (shift/scaling).

• Bias is added based on BIAS MODE POST ADD.

• ReLU is applied if the output is negative.

// Apply normalization and bias

if (BIAS_MODE_POST_ADD) begin

numerator = accum;

out_int = ((numerator * 257) + (1<<15)) >>> 16;

out_int = out_int + bias16;

end
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Top-Level Integration In a top-level CNN module, multiple ‘conv2d‘ cores are in-
stantiated alongside all ROM modules:

• Each ‘conv2d‘ core receives broadcast image addresses to three channel ROMs.

• Kernel and bias ROMs are separate for each filter.

• FSMs in each core control MAC operations independently, allowing parallel pro-
cessing.

• The handshake protocol ensures that multiple cores do not access ROMs simulta-
neously in a conflicting manner.

FSM Advantages

• Ensures deterministic sequencing of convolution operations.

• Supports parametrized kernels, channels, and padding without rewriting RTL.

• Facilitates reuse of the convolution module across layers in a CNN.

• Simplifies integration with other layers (MaxPool, Dense, GAP) by providing syn-
chronized output with valid signals.

Illustrative FSM State Diagram (Simplified) The main states of the FSM include:

• S IDLE: Wait for the start signal.

• S START FILTER: Request the bias for the current filter.

• S BIAS WAIT: Wait for the bias data to be valid from ROM.

• S SETUP PIXEL: Initialize accumulation for the current pixel.

• S MAC DECIDE: Determine if the current kernel element falls within valid input
boundaries, handling padding.

• S IMG REQ / S IMG WAIT: Request and wait for the corresponding image
pixel from the ROM.

• S KERN REQ / S KERN WAIT: Request and wait for the corresponding
kernel weight.

• S MAC ACCUM: PerformMAC operation and iterate across channels and kernel
dimensions.

• S PIXEL DONE: Apply normalization and bias, apply ReLU, and generate out-
put.
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• S NEXT PIXEL / S NEXT FILTER: Move to the next pixel or filter.

• S DONE: Signal that convolution is complete.

S_IDLE --> S_START_FILTER --> S_BIAS_WAIT --> S_SETUP_PIXEL

--> S_MAC_DECIDE --> S_IMG_REQ --> S_IMG_WAIT

--> S_KERN_REQ --> S_KERN_WAIT --> S_MAC_ACCUM

--> S_PIXEL_DONE --> S_NEXT_PIXEL --> S_NEXT_FILTER

--> S_DONE

This linear but looping FSM efficiently traverses all pixels, channels, and filters, mak-
ing it the core control mechanism of the convolution module.
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5.8 Max Pooling Core Implementation (‘max pool‘)

The ‘max pool‘ module implements a streaming max-pooling operation in hardware. It
reads the input feature map (IFM) through a handshake-based interface, computes the
maximum within a pooling window, and outputs the pooled results as a stream.

Parametrization The module is highly configurable:

• WIDTH IN, HEIGHT IN: Input feature map dimensions.

• CHANNELS: Number of input channels.

• POOL SIZE: Size of the pooling window (e.g., 2 for 2x2 pooling).

• STRIDE: Step size between pooling windows.

Output dimensions are derived automatically:

WIDTH_OUT = (WIDTH_IN - POOL_SIZE) / STRIDE + 1

HEIGHT_OUT = (HEIGHT_IN - POOL_SIZE) / STRIDE + 1

FSM-Based Control The module uses a finite state machine to control the max-
pooling operation, systematically iterating over:

• Channels (‘c‘)

• Output rows (‘ph‘)

• Output columns (‘pw‘)

• Window elements within the pooling region (‘pi‘, ‘pj‘)
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Handshake Protocol Similar to the convolution core, the module uses a two-phase
handshake for reading IFM data:

• Address Request: Assert ifm addr valid with the current address and channel.

• Data Latching: When ifm data valid is asserted, the module asserts ifm data ready

and latches the value.

This ensures the core does not proceed until valid data is available, maintaining syn-
chronization with external memory modules or testbench-provided streams.

FSM Example: Requesting IFM Data

in_y = ph * STRIDE + pi;

in_x = pw * STRIDE + pj;

ifm_addr <= in_y * WIDTH_IN + in_x;

ifm_chan <= c;

ifm_addr_valid <= 1’b1;

After the handshake, the data is compared with the current maximum:

if (sample_q17 > max_val)

max_val <= sample_q17;

Streaming Output Once all pixels in the pooling window are processed, the maximum
value is sign-extended and streamed out:

// 16-bit -> 32-bit

out_data <= { {16{max_val[15]}}, max_val };

out_valid <= 1’b1;

The ‘S NEXT‘ state then advances output coordinates or moves to the next channel.
This streaming approach allows the module to produce outputs continuously without
storing the entire IFM internally.

FSM Advantages

• Provides deterministic control over pooling operations.

• Supports arbitrary input sizes, channels, pooling sizes, and stride.

• Interfaces seamlessly with other modules via handshake signals.

• Enables pipelined streaming output, minimizing memory usage.
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Illustrative FSM Flow The FSM states are:

• S IDLE: Wait for the ‘start‘ signal.

• S START: Begin processing the first channel and output cell.

• S INIT CELL: Reset pooling window counters and maximum value.

• S REQ: Request current pixel from IFM ROM (handshake interface).

• S WAIT: Wait for valid IFM data from ROM.

• S ACC: Update the maximum for the pooling window.

• S OUTPUT: Stream out the pooled maximum value.

• S NEXT: Move to the next output cell, channel, or finish.

• S DONE: Signal completion of max-pooling.

S_IDLE --> S_START --> S_INIT_CELL --> S_REQ --> S_WAIT

--> S_ACC --> S_OUTPUT --> S_NEXT --> ... --> S_DONE

Each pooling window element is processed sequentially, while multiple channels and
output cells are iterated systematically. The FSM ensures all pixels are considered, and
the max is computed accurately.

Integration in Top-Level CNN In the top-level module:

• ‘max pool‘ cores receive IFM streams from preceding ‘conv2d‘ cores or ROMs.

• Handshake signals synchronize the pool with convolution outputs.

• The FSM ensures that streamed outputs are valid only when ready, enabling pipelined
execution for subsequent layers (e.g., addition, GAP, Dense).
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5.9 Residual / Shortcut Add Module (‘add‘)

The residual add module implements skip connections commonly used in ResNet-
style architectures. It combines the main convolution path with a shortcut path (either
identity or 1x1 convolution) to improve gradient flow and enable deeper networks. All
computations are performed in Q7 fixed-point.

Shortcut / 1x1 Convolution When the shortcut path requires dimensional align-
ment, a 1×1 convolution is applied to the input to match the number of output channels.
Each output pixel is computed as a weighted sum of input channels plus bias:

for (i = 0; i < H_IN; i = i + 1) begin

for (j = 0; j < W_IN; j = j + 1) begin

for (oc = 0; oc < OUT_CH; oc = oc + 1) begin

sum = 0;

for (ic = 0; ic < IN_CH; ic = ic + 1) begin

prod = kernel_1x1[ic][oc] * input_img[i][j][ic]; // Q7 multiply

sum = sum + prod;

end

shortcut[i][j][oc] = (sum + ROUND_CONST) / SCALE + bias_1x1[oc];

end

end

end

Residual Addition Once the shortcut is ready, the main convolution output is added
element-wise to the shortcut:

for (i = 0; i < H_OUT; i = i + 1) begin

for (j = 0; j < W_OUT; j = j + 1) begin

for (oc = 0; oc < OUT_CH; oc = oc + 1) begin

res_out[i][j][oc] = conv_out[i][j][oc] + shortcut[i][j][oc];

end

end

end
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Key Points

• Ensures the main and shortcut paths have compatible dimensions (via 1x1 convo-
lution if needed).

• Accumulation uses sufficiently wide integers to avoid overflow in Q7 representation.

• Element-wise addition is highly parallelizable in hardware, allowing channel-wise
SIMD operations.

• Supports streaming interfaces: output pixels can be sent sequentially or stored in
on-chip buffers.

• Preserves fixed-point scaling and avoids intermediate floating-point computation,
keeping the module fully hardware-friendly.
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5.10 Global Average Pooling (‘gap‘)

The Global Average Pooling module computes the mean of each input feature map.
Instead of storing all spatial data for post-processing, GAP averages each channel across
its width and height, producing a single value per channel. In our design, all data is in
Q1.7 format, ensuring consistent fixed-point representation.

Implementation Overview

• Input: feature maps of size H ×W per channel.

• Output: single value per channel.

• Computation: sum all pixel values in the channel, divide by the number of elements.

Example snippet

for (c = 0; c < CHANNELS; c = c + 1) begin

sum = 0;

for (i = 0; i < VALUES_PER_MAP; i = i + 1)

sum = sum + feature_map[c][i]; // Q7 integer sum

gap_result[c] = sum / VALUES_PER_MAP; // integer average

end

Key Points

• Keeps scaling consistent (Q7).

• Outputs are directly fed into the dense layer without additional normalization.

• Reduces memory footprint by replacing each channel’s feature map with a single
value.
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5.11 Dense / Fully Connected Layer (‘dense‘)

The dense layer performs a matrix-vector multiplication between the GAP outputs and
the dense layer’s weights, followed by bias addition. The design uses Q7 fixed-point
arithmetic to maintain precision while avoiding floating-point overhead.

Implementation Highlights

• Inputs: GAP results per channel (Q7 integer).

• Weights and biases stored in ROM blocks for hardware access.

• Outputs: logits (pre-softmax scores), one per output neuron.

Example snippet

// Accumulate weighted sum for output neuron j

accum = 0;

for (i = 0; i < INPUT_SIZE; i = i + 1) begin

product = gap_q7[i] * kernel_q7[i][j]; // Q7*Q7

accum = accum + product;

end

// Add bias

out_q7[j] = accum + bias_q7[j];
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Key Points

• Uses wide accumulators to avoid overflow.

• Each output neuron computes independently; outputs can be streamed or stored.

• ROM-based weight storage allows easy replacement or retraining.
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5.12 Softmax and Class Prediction (‘softmax‘)

The softmax module converts dense layer logits into probabilities and selects the pre-
dicted class. In hardware, it is common to pass only the index of the predicted class (0–9)
to save resources. All operations are performed in Q7 fixed-point for consistency.

Implementation Highlights

• Inputs: dense layer outputs (logits).

• Softmax computation can be done in approximate integer or floating-point for ver-
ification.

• Output: predicted class index (0–9) and optional probability mapping.

Example snippet

// Find max logit for class prediction

max_idx = 0;

max_val = logits_q7[0];

for (i = 1; i < CLASS_NUM; i = i + 1) begin

if (logits_q7[i] > max_val) begin

max_val = logits_q7[i];

max_idx = i;

end

end

predicted_class = max_idx; // 0-9
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Key Points

• Only a single 4-bit index is needed for classification output.

• Mapping to human-readable label can be done externally (e.g., testbench or soft-
ware).

• Simplifies hardware while maintaining correct top-1 prediction.
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5.13 Top-Level CNN Module and Testbench

The top-level module integrates multiple convolution cores, max-pooling, residual add,
GAP, dense, and softmax blocks into a full CNN pipeline. It is designed for Model
Architecture 4 and Model Architecture 8, with streaming input from ROM-based image
storage.

5.13.1 Top-Level Module Architecture

The top module parameterizes the first convolution core and wires subsequent cores with
corresponding weights and biases. Each core has its own ROM interface for kernels and
biases, and all modules communicate via handshake-based streaming.

Connections and Parameterization

• Conv2D cores: Each core receives pixel streams from upstream blocks or image
ROMs. The first core’s parameters (WIDTH, HEIGHT, CHANNELS, FILTERS,
KERNEL SIZE) are configurable.

• ROM blocks: Each convolution core accesses its weights and biases via dedicated
ROMs. Handshake signals (addr valid, addr ready, data valid, data ready)
ensure proper sequencing.

• Max-Pool / Residual Add / GAP: Modules receive processed feature maps from
prior blocks. Streaming handshake ensures data integrity and sequential consump-
tion.

• Dense and Softmax: The GAP output feeds the dense layer, whose outputs feed
the softmax module. Only the predicted index (0–9) is passed to the testbench.

Example: Conv2D Core Wiring in Top Module

// image ROM interface

conv2d_core0 (

.clk(clk),

.rst(rst),

.start(start),

.image_addr(image_addr),

.image_addr_valid(image_addr_valid),

.image_addr_ready(image_addr_ready),

.image_r_data(image_r_q),

.image_g_data(image_g_q),

.image_b_data(image_b_q),

.image_data_valid(image_data_valid),
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.image_data_ready(image_data_ready),

.kernel_addr(kernel_addr0),

.kernel_addr_valid(kernel_addr_valid0),

.kernel_addr_ready(kernel_addr_ready0),

.kernel_data(kernel_data0),

.kernel_data_valid(kernel_data_valid0),

.kernel_data_ready(kernel_data_ready0),

.bias_addr(bias_addr0),

.bias_addr_valid(bias_addr_valid0),

.bias_addr_ready(bias_addr_ready0),

.bias_data(bias_data0),

.bias_data_valid(bias_data_valid0),

.bias_data_ready(bias_data_ready0),

.out_data(conv0_out),

.out_valid(conv0_valid)

);

Testbench (TB) Interface

• Loads images from .mem files for R, G, B channels.

• Streams pixel data via handshake to the first Conv2D core.

• Receives outputs sequentially from each core, forwarding to next modules (MaxPool
/ Residual / GAP / Dense / Softmax).

• Monitors final predicted class index (0–9) and optionally maps it to a string label.

Top-Level FSM / Data Flow While individual conv cores have their FSMs for MAC
accumulation, the top module itself mostly wires streaming paths:

• Handshake ensures no data is lost between modules.

• Each core signals out valid when its output is ready; downstream modules assert
data ready to consume.

• Parameterized cores allow easy scaling of FILTERS or kernel sizes without changing
TB or ROM connections.
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5.14 MODEL ARCH 4 (Initial)

Conv1 Parameters:
kernel, bias, and input
blue image

Conv2D layer 1

Conv2D layer 2 Maxpool layer
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5.15 MODEL ARCH 8 (Full CNN)

Full CNN block diagram (Model Architecture 8): convolution, residual add, pooling,
GAP, dense, softmax.

Notes

• Images stored in ROM are read sequentially and broadcast to multiple channels of
the first convolution core.

• Each Conv2D, MaxPool, Residual Add, GAP, Dense, and Softmax module operates
in Q7 fixed-point domain for consistency.

• Handshake ensures sequential and correct data propagation across pipeline stages.

• Top module allows easy swapping of weights and bias ROMs for experiments with-
out modifying FSMs of individual cores.
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6 Systolic Array Based Matrix Multiplication and

Convolution

Systolic arrays are highly efficient hardware architectures designed for performing repet-
itive numerical computations, particularly matrix multiplication and convolution, in a
structured and pipelined manner. The term “systolic” refers to the rhythmic, pulse-like
propagation of data through a grid of processing elements (PEs), similar to the heart-
beat. This design enables massive parallelism while minimizing external memory access,
making it highly suitable for applications in linear algebra, deep learning accelerators,
and signal processing.

The key principle behind systolic arrays is that each PE performs a simple compu-
tation—typically a multiply-accumulate (MAC)—and forwards its inputs to neighboring
PEs. This allows each element of the input matrices to be reused across multiple PEs, re-
ducing memory bandwidth requirements. Additionally, the regular, local communication
between PEs makes the array highly scalable and amenable to pipelining.

6.1 Mathematical Background and Efficiency

Consider the multiplication of two matrices, A ∈ RN×M and B ∈ RM×K , producing a
matrix C ∈ RN×K :

Cij =
M−1∑
k=0

Aik ·Bkj, 0 ≤ i < N, 0 ≤ j < K (8)

A naive implementation would require fetching elements of A and B from memory for
each multiplication, leading to high memory bandwidth and latency. Systolic arrays mit-
igate this by streaming the elements of A across rows and elements of B across columns.
Each PE receives one element from A and one from B, performs a multiplication, adds
it to an internal accumulator, and forwards the operands to neighboring PEs.

Mathematically, the computation within a PE can be expressed as:
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c
(k)
ij = c

(k−1)
ij + aik · bkj (9)

where c
(k)
ij is the partial sum after processing the k-th element of the summation. By

distributing the summation across a 2D grid of PEs and pipelining the inputs, the systolic
array achieves:

1. Parallelism: Each PE operates concurrently, producing one partial sum per clock
cycle.

2. Data Locality: Operands move only to immediate neighbors, minimizing global
memory access.

3. Pipelining: Once the array is filled, one output per PE per clock cycle can be
produced continuously.

This structure allows for high throughput and energy efficiency, especially for large
matrices.

6.2 GEMM Implementation

The general matrix multiplication (GEMM) is implemented using a 2D grid of PEs. Each
PE maintains a local accumulator, performs a multiply-accumulate operation, and for-
wards the operands to the next PE in its row or column. The top-level module organizes
the PEs to multiply an N×M matrix A with an M×K matrix B to produce C ∈ RN×K .

Processing Element (PE) Each PE implements a multiply-accumulate operation:

module pe(

input clk,

input rst,

input [7:0] a_in,

input [7:0] b_in,

output reg [7:0] a_out,

output reg [7:0] b_out,

output reg [15:0] c_out

);

reg [15:0] acc;

always @(posedge clk or posedge rst) begin

if (rst) begin

a_out <= 0;

b_out <= 0;
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c_out <= 0;

acc <= 0;

end else begin

a_out <= a_in;

b_out <= b_in;

acc <= acc + a_in * b_in;

c_out <= acc;

end

end

endmodule

The PE is fully pipelined: ‘a in‘ and ‘b in‘ are forwarded to the next PE while the
internal accumulator updates the partial sum. This local accumulation avoids repeated
memory accesses for intermediate sums.

Top-Level Systolic Array The PEs are arranged in an N × K grid, enabling the
computation of all Cij elements in parallel. Input streams are delayed appropriately using
registers to align operands across the array. The top-level module can be parameterized
for any matrix dimensions N , M , and K:

module top #(

parameter N = 4,

parameter M = 4,

parameter K = 4

)(

input clk,

input rst,

input [7:0] a_in [0:N-1][0:M-1],

input [7:0] b_in [0:M-1][0:K-1],

output [15:0] c_out [0:N-1][0:K-1]

);

// Instantiate PEs in an NxK grid

// Forward a_in along rows, b_in along columns

// Each PE computes partial sums

endmodule

The testbench only sequences the input matrices into the array and observes the
output. Because the computation is fully pipelined, the testbench logic is minimal and
does not introduce additional complexity. Its primary function is to verify correctness for
different input sizes.

This GEMM implementation using systolic arrays achieves high throughput and en-
ergy efficiency by exploiting parallelism, pipelining, and local communication. The pa-
rameterized design allows scaling to arbitrary N ×M ×K matrices, making it suitable
for hardware accelerators where matrix multiplication dominates computation time.
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6.3 Convolutional Layer Implementation (Conv2D)

A 2D convolution operation computes a weighted sum over a sliding window of the input
image. Mathematically, for an input image I ∈ RN×N and a kernel K ∈ RK×K :

Oi,j =
K−1∑
m=0

K−1∑
n=0

Ii+m,j+n ·Km,n, 0 ≤ i, j < N −K + 1 (10)

Two common convolution modes are valid (no padding, output smaller than input)
and same (zero-padding, output same size as input).

Systolic Array Mapping and Inner Modules The 3x3 convolution is mapped to a
systolic structure composed of 9 processing elements (PEs), each being a multiply-
accumulate (MAC) unit. Every PE takes one pixel and one kernel weight, computes a
product, and contributes it to the convolution sum. These 9 products are then aggregated
through a tree of carry-save adders (CSAs) to produce the final convolution output.

• Processing Element (PE): Each PE is realized as a MAC unit that accepts an 8-
bit signed pixel (A), an 8-bit signed kernel coefficient (B), and a 16-bit accumulator
input. Internally, it uses:

1. A Booth multiplier for signed 8×8 multiplication, producing a 16-bit prod-
uct.

2. A carry-save adder (CSA) to add the product, the accumulator input, and
a zero.

3. A final carry-propagate adder that combines the CSA’s sum and shifted
carry outputs, generating the accumulated result.

This design minimizes critical path delay while allowing pipelining of MAC results.

• CSA Tree for Accumulation: Since 9 MAC units operate in parallel, their
outputs must be combined efficiently. A three-level CSA tree is employed:

(P0, P1, P2) → (s0, c0)

(P3, P4, P5) → (s1, c1)

(P6, P7, P8) → (s2, c2)

The final result is computed as:

Out = (s0 + s1 + s2) + ((c0 + c1 + c2) ≪ 1)

This reduces delay compared to a single 9-input adder.
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• Pipeline Registers:

1. Stage0: Holds sampled 16-bit pixel values (‘px16 s0‘) from the input image.

2. Stage1: Truncates pixel and kernel values to 8 bits for MACs (‘px8 s1‘,
‘ker8 s1‘).

3. Stage2: Registers MAC outputs (‘prod s2‘) before feeding them to the CSA
tree.

Pipeline Flow and Data Alignment The convolution pipeline operates as follows:

1. Sampling Window: The FSM scans the input image, extracting a 3x3 window
for each output pixel. For same convolution, padding is applied by inserting zeros
where indices go out of bounds.

2. Kernel Flipping: The kernel is flipped prior to computation to satisfy the convo-
lution definition.

3. Stage Propagation:

• Pixels from ‘px16 s0‘ are truncated to 8-bit values and forwarded to MAC
units in Stage1.

• MAC outputs (‘prod wire‘) are registered into ‘prod s2‘ in Stage2 to align with
the CSA pipeline.

4. Valid Alignment: A 3-bit shift register (‘valid pipe‘) tracks the propagation of
valid data through the stages. When ‘valid pipe[2]‘ is high, the output corresponds
to a fully computed convolution value.

5. Output Counters: ‘out row cnt‘ and ‘out col cnt‘ track the spatial position of
the output pixel. These counters advance only when an output is emitted.

Verilog Implementation Overview The design instantiates:

• 9 MAC units, each forming a PE.

• 3 CSAs, reducing 9 partial products into final sum.

• FSM + pipeline control logic, ensuring continuous throughput, flush handling,
and SAME/VALID mode support.
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Key Architectural Features

• PE-level parallelism: All 9 multiplications happen simultaneously.

• MAC architecture: Booth multiplier + CSA + final adder reduces critical path
delay.

• CSA accumulation: Parallel reduction tree for 9 products avoids long adder
chains.

• Stage-by-stage pipelining: Continuous data flow, one output per cycle after
pipeline fill.

• Flush support: Pipeline always propagates valid signals until the last output is
produced.

• Flexible convolution modes: SAME with zero-padding, or VALID without
padding.
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6.4 Yosys Netlists of Modules

To validate the register–transfer level design and visualize the datapath structure, Yosys
was used to generate netlists for the major building blocks. These netlists illustrate
how arithmetic primitives and processing elements are interconnected within the systolic
arrangement.

Netlist of the Booth multiplier block. The partial product generation and encoding stages
are visible in the datapath.

Netlist of the carry–save adder (CSA). The three–input adder structure reduces multiple
partial results into sum and carry outputs.
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Netlist of a multiply–accumulate (MAC) unit. It integrates the Booth multiplier with a
CSA and final adder.

Netlist of a processing element (PE). The PE encapsulates one MAC unit along with
local registers for systolic data movement.

Netlist of the complete systolic array arrangement. Multiple PEs are interconnected to
form a parallel datapath for matrix–style computation.
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6.5 Comparison of MAC Unit Architectures

In high-throughput accelerators such as systolic arrays for GEMM and Conv2D, the
performance of individual MAC units cannot be considered in isolation. When multiple
MAC units are paired or arranged in a 2D array, additional waiting cycles occur due
to pipeline alignment, data propagation, and carry-save accumulation. Consequently,
the latency of a combined MAC pair or array is always higher than the latency of a
single MAC unit, while throughput may be limited by interconnect delays and output
readiness. This subsection analyzes both adder and multiplier architectures to highlight
these effects.

6.5.1 8-bit Signed Adders

Detailed Comparison of 8-bit Signed Adders

Metric CSA Kogge–Stone RCA
Core Area (µm²) 2,522 3,689 1,126
Die Area (µm²) 4,604 6,093 2,572
Utilization (%) 54.79 60.54 43.79
Flip-Flops 0 0 0
Total Cells 64 110 34
Combinational Cells 64 110 34
Clock Period (ns) 10.00 10.00 10.00
Critical Path (ns) 5.07 6.21 7.14
Fmax (MHz) 197.24 161.03 140.06
Total Power (mW) 0.0834 0.0957 0.0326
Energy per Cycle (pJ) 0.834 0.957 0.326
Latency (ns) 5.07 6.21 7.14
Throughput (ops/s) 197,238,700 161,030,600 140,056,000
Energy per Operation (pJ) 422.84 594.30 232.76
Power Efficiency (ops/s per mW) 2,364,972,000 1,682,660,000 4,296,197,000
Area Efficiency (ops/s per µm²) 42,839.65 26,429.79 54,459.20

Observations:

• CSA achieves the shortest critical path (5.07 ns) and highest Fmax (197 MHz) due
to parallel partial sum computation.

• RCA is the most compact and energy-efficient, but its simple ripple structure results
in the slowest performance.

• Kogge–Stone has high speed theoretically, but wire-driven delays and dense prefix
logic increase area and practical delay.
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6.5.2 8-bit Signed Multipliers

Detailed Comparison of 8-bit Signed Multipliers

Metric MBE Booth Baugh–Wooley
Core Area (µm²) 9,594 14,369 11,911
Die Area (µm²) 13,094 18,687 15,827
Utilization (%) 73.27 76.89 75.26
Flip-Flops 0 0 0
Total Cells 294 470 374
Combinational Cells 294 470 374
Clock Period (ns) 10.00 10.00 10.00
Critical Path (ns) 8.84 12.50 8.63
Fmax (MHz) 113.12 80.00 115.87
Total Power (mW) 0.379 0.701 0.448
Energy per Cycle (pJ) 3.79 7.01 4.48
Latency (ns) 8.84 12.50 8.63
Throughput (ops/s) 113,122,200 80,000,000 115,874,900
Energy per Operation (pJ) 3,350.36 8,762.50 3,866.24
Power Efficiency (ops/s per mW) 298,475,400 114,122,700 258,649,200
Area Efficiency (ops/s per µm²) 8,639.16 4,281.08 7,321.29

Observations:

• Baugh–Wooley achieves the shortest critical path (8.63 ns) and highest Fmax (115.9
MHz) due to its regular array layout.

• Booth multiplier (Radix-2) suffers from high latency (12.5 ns) and power consump-
tion (0.701 mW) because of additional partial product handling.

• MBE provides the best energy efficiency and balanced area utilization, making it
optimal for paired MAC deployments.
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6.5.3 Summary of MAC Unit Efficiency

Overall MAC Component Efficiency Summary

Category Adders Best Multipliers Best
Speed / Fmax CSA Baugh–Wooley / MBE
Power RCA MBE
Area RCA MBE
Overall Efficiency RCA (compact, efficient) MBE (balanced)

As seen in the previous section, we have selected the CSA andMBE as the final adder–multiplier
pair for our design. CSA provides significantly better speed with only a modest increase
in area, while MBE offers a balanced trade-off between speed, power, and area, making
the combination optimal for overall MAC efficiency

Key Insight: While these tables reflect the isolated performance of individual adders
and multipliers, the effective latency of a MAC array in GEMM or Conv2D accelerators
is higher due to pipeline propagation and waiting cycles. Similarly, throughput is in-
fluenced by data alignment and CSA accumulation stages, highlighting that array-level
performance always differs from single-unit metrics.
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6.6 Timing Estimate (MODEL ARCH 8)

Assumptions. The following simplifying assumptions are made for estimating the la-
tency of one forward inference:

1. The systolic convolution engine computes one convolution output (one spatial lo-
cation × one output channel) per clock cycle in steady state.

2. A small fixed overhead of approximately 3 cycles per kernel is incurred (kernel flip
and pipeline flush).

3. Elementwise residual adds and global pooling reductions are implemented as 1 cycle
per arithmetic operation.

4. The fully connected (Dense) layer is implemented with one multiply–accumulate
per cycle.

5. No additional stalls are assumed from memory bandwidth or control logic.

6. Clock frequency is treated as a variable (f), and estimates are shown for 50, 100, 200,
and 250MHz.

Output counts per layer.

conv2d (32×32×28) : 32 · 32 · 28 = 28,672

conv2d 1 (32×32×28) : 28,672

conv2d 2 (32×32×28) : 28,672

conv2d 3 (16×16×56) : 16 · 16 · 56 = 14,336

conv2d 4 (16×16×56) : 14,336

conv2d 5 (16×16×56) : 14,336

Total convolution outputs = 28,672× 3 + 14,336× 3 = 129,024

Cycle accounting.

Base convolution cycles = 129,024

Per-kernel overhead = 252× 3 = 756

Residual adds = (32 · 32 · 28) + (16 · 16 · 56)
= 28,672 + 14,336 = 43,008

Global average pooling = 56 · 63 = 3,528

Dense (56→10) = 560

Total cycles = 129,024 + 756 + 43,008 + 3,528 + 560 = 176,876
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Wall-clock latency. Latency is given by

T =
cycles

f
.

Clock frequency f Period Latency T
50MHz 20 ns 176,876/50×106 ≈ 3.54ms
100MHz 10 ns 176,876/100×106 ≈ 1.77ms
200MHz 5 ns 176,876/200×106 ≈ 0.88ms
250MHz 4 ns 176,876/250×106 ≈ 0.71ms

Estimated latency per inference.
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6.7 GDS and Layout Visualizations for Adders and Multipliers

6.7.1 Adder Visualizations

Figure 1: Adder GDS (top) and Layout (bottom) visualizations.

6.7.2 Multiplier Visualizations

Figure 2: Multiplier GDS (top) and Layout (bottom) visualizations.
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Note on Environment and Verification Setup

All synthesis and verification experiments were carried out in a consistent flow, using
the same TCL scripts and Yosys synthesis scripts. This uniform environment ensures
that results are directly comparable without any tool-induced bias. Each RTL module
was verified against its dedicated testbench, and post-synthesis reports confirmed that
all designs met the specified timing requirements.

For technology mapping, only the SkyWater 130 nm (Sky130) open-source PDK
was used. This PDK is provided through a collaboration between Google and SkyWater
Technology, enabling open-source access to a fully characterized standard-cell library.
The Sky130 platform allows digital design, synthesis, place-and-route, and verification
flows to be tested on a real CMOS technology node.

Specifically, the standard-cell library used for synthesis was:

sky130_fd_sc_hs__tt_025C_1v80.lib

Breaking down the naming convention:

• sky130 – Refers to the SkyWater 130 nm technology node.

• fd – Denotes the ”foundry” designation.

• sc – Standard-cell library.

• hs – High-speed (HS) flavor of the library, optimized for performance at the cost
of area and power.

• tt – Typical process corner (typical NMOS, typical PMOS ), representing nominal
manufacturing conditions.

• 025C – Temperature corner at 25◦C, i.e., room temperature.

• 1v80 – Operating supply voltage of 1.80V.

sky130 fd sc hs tt 025C 1v80.lib represents a standard-cell library characterized
for the Sky130 process, using the high-speed cell set, under typical conditions at 25◦C and
1.8V supply. This ensures that synthesis, timing analysis, and verification are carried
out on a realistic and industry-compatible open-source technology.

For more details, refer to this:
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Additional Repositories:

8 Demo Video
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